您一定要做的3D细胞培养
关于3D细胞培养的小知识
Unitantrix®应用于旋转搅拌瓶生物反应器中的干细胞扩增技术
三维细胞培养支架操作演示
3D细胞培养-模拟生物体内的真实情况,
是目前相关研究领域的发展方向
After 96 houre drug treatment
with A431 cell line
品牌 | Tantti® BioScaffold | M® | B® | C™ | D® | E® |
---|---|---|---|---|---|---|
产品照片 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
公司 | Tantti Lab Inc. | A 公司 | B 公司 | C 公司 | D 公司 | E 公司 |
操作简易 | ![]() |
![]() |
![]() |
![]() |
![]() |
|
可溶解性 | ![]() |
![]() |
![]() |
![]() |
||
批次稳定 | ![]() |
![]() |
![]() |
![]() |
![]() |
|
高连通率 | ![]() |
![]() |
||||
长时间培养 | ![]() |
![]() |
||||
高有效生长面积 | ![]() |
Primary cardiomyocytes contracting
on 3D Cell Culture Scaffold
Live-dead staining of NIH 3T3 on scaffolds
and product M® after 7 days
The comparison of NIH 3T3 cell survival obtained by
MTS assay between BioScaffolds and product M®
品牌 | Tantti UniTantrix™ Microcarriers |
G公司 | P公司 | C公司 | K公司 |
---|---|---|---|---|---|
产品内部结构 | ![]() |
![]() |
![]() |
![]() |
![]() |
材料 | collagen or polysaccharide | cellulose | gelatin | polygalacturonic acid | collagen |
微载体尺寸(μm) | 200-500μm | 200-270 μm | 130-380 μm | 200-300 μm | 100-400 μm |
有效生长表面面积 | ![]() ![]() ![]() |
![]() |
![]() ![]() |
![]() |
![]() |
内部平均孔径 | ~150μm | 30 μm | 20 μm | - | - |
高连通率 | Yes | No | No | No | No |
可溶解性 | Yes | No | No | No | - |
Autoclave | Yes | No | No | No | No |
Cell Type | BMSCs | BMSCs |
---|---|---|
Microcarrier (Dry Power) | Product C (PGA+Denatured Collagen) | UnitantrixTM (Denatured Collagen) |
Microcarrier Diameter | 200~300 μm (solid spherical) | 200~850 μm (irregular shape) |
Microcarrier concentration | 1 g / L (5000 cm2 / g ) | 1 g / L (~6000 cm2 / g ) |
Dissolvable | Yes | Yes |
Cell Type | Vero Cell | Vero Cell |
---|---|---|
Microcarriers (Dry Power) | Product G(Dextran+DEAE) | UniTantrixTM (Denatured Collagen) |
Microcarriers Diameter | 190 μm (solid spherical) | 200~850 μm (irregular shape) |
Microcarriers Concentration | 5 g / L (4400 cm2 / g ) | 2 g / L (~6000 cm2 / g ) |
Dissolvable | No | Yes |
产品系列 | 描述 |
---|---|
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 96 well plates,5 inserts / vial,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 96 well plates,25 inserts / vial,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 96 well plates,50 inserts / vial,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 48 well plates,5 inserts / vial,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 48 well plates,25 inserts / vial,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 48 well plates,50 inserts / vial,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 96 well plates,32 inserts / 96 well plate,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 96 well plates,60 inserts / 96 well plate,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 96 well plates,96 inserts / 96 well plate,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 48 well plates,16 inserts / 48 well plate,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 48 well plates,24 inserts / 48 well plate,sterile |
Tantti® BioScaffold(3D细胞培养支架) | Insert Collagen Scaffold for 48 well plates,48 inserts / 48 well plate,sterile |
Unitantrix® microcarriers (GMP级3D细胞培养微载体) | Dissolvable microcarriers collagen,weight 500mg/vial,sterile |
Unitantrix® microcarriers (GMP级3D细胞培养微载体) | Dissolvable microcarriers collagen,weight 1g/vial,sterile |
Unitantrix® microcarriers (GMP级3D细胞培养微载体) | Dissolvable microcarriers collagen,weight 5g/vial,sterile |
Unitantrix® microcarriers (GMP级3D细胞培养微载体) | Dissolvable microcarriers collagen,weight 10g/vial,sterile |
Applications | Reference |
---|---|
A. Immune cells | 1. Lee J., et al., Inverted colloidal crystal as three-dimensional microenvironment for cellular co-cultures. Journal of Materials Chemistry (Impact factor: 6.626), 2006, 16: p.3558-3564. 2. Stachowiak A. N. and Irvine D. J., Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. Journal of Biomedical Materials Research Part A (Impact factor: 3.263), 2008, 85(3): p. 815-828. |
B. Cell migration | 1. Peyton S. R., et al., Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and
stiffness. Biotechnol Bioeng (Impact factor: 4.243), 2011, 108(5): p. 1181-1193. 2. Sliva J. D., et. al., 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integrative Biology (impact factor: 3.371), 2011, 3: p. 1202-1206. |
C. Formation of cell bodies | 1. Lee J., et al., Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials (Impact factor: 8.387), 2009, 30(27): p. 4687-4694. 2. Lee J., et al., In vitro toxicity testing of nanoparticles in 3D cell culture. Small (Impact factor: 8.315), 2009, 5(10): p. 1213-1221. 3. Zhang Y. and Xia Y., Formation of Embryoid Bodies with Controlled Sizes and Maintained Pluripotency in Three-Dimensional Inverse Opal Scaffolds. Advanced Functional Materials (Impact factor: 11.382), 2012, 22(1): p. 121-129. |
D. Neovascularization | 1. Madden L. R., et al., Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America (Impact factor: 9.432), 2010, 107(34): p. 15211-15216 |
E. Bone | 1. Osathanon T., et al., Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials (Impact factor: 8.387), 2008, 29(30): p. 4091-4099. 2. Cuddihy M. J. and Kotov N. A., Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Engineering Part A (Impact factor: 3.893), 2008, 14(10): p. 1639-1649. 3. Osathanon T., et al., Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials (Impact factor: 8.387), 2009, 30(27): p. 4513-4521. 4. Choi S. W., et al., In Vitro Mineralization by Preosteoblasts in Poly(dl-lactide-co-glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles. Lanqmuir (Impact factor: 3.993*), 2010, 26(14): p. 12126-12131. |
F. Cartilage | 1. Kuo Y. C. and Tsai Y. T., Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules (Impact factor: 5.583), 2010.11(3): p. 731-739. 2. Kuo Y. C. and Tsai Y. T., Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration. Collold surface B (Impact factor: 3.902), 2011, 82(2): p.616-623. |