您一定要做的3D细胞培养

关于3D细胞培养的小知识

Unitantrix®应用于旋转搅拌瓶生物反应器中的干细胞扩增技术

三维细胞培养支架操作演示

×
为何要进行“3D细胞培养”?
传统2D细胞培养的缺点
3D细胞培养的优点 - 抗癌药物测试

3D细胞培养-模拟生物体内的真实情况,
是目前相关研究领域的发展方向

After 96 houre drug treatment
with A431 cell line

3D细胞培养的优点 - 干细胞培养
Secretion of extracellular matrix (ECM) proteins
by human adipose-derived
mesenchymal stem cells (MSCs) under different culture condition
Paracrine secretion of human adipose-derived mesenchymal stem
cells (MSCs) under different culture conditions
Expression of anti-oxidative proteins and apoptosis-related proteins by human adipose-derived
mesenchymal stem cells (MSCs) under H2O2 stimulation
“3D细胞培养”应用领域
3D细胞培养- 市场应用
高通量药物筛选/测试
体外肿瘤/类器官模型
组织工程/细胞治疗
疫苗/生物制药生产
科研单位
新药开发/抗癌药物研究公司CRO
委托研究机构/公司
医院
组织修复相关医材公司
细胞疗法相关公司
生物制药/疫苗生产公司
3D细胞培养支架- 市场应用

Regenerative MedicineTissue
Engineering

Cell
Therapy

Vaccine &
Biomolecule Drug

Drug Discovery & Testing
Patient-Derived Organoid

High Throughput
Screening

产品特点和优势
3D细胞培养 - 主要特点 / 竞争优势
品牌 Tantti® BioScaffold C™
产品照片
公司 Tantti Lab Inc. A 公司 B 公司 C 公司 D 公司 E 公司
操作简易
可溶解性
批次稳定
高连通率
长时间培养
高有效生长面积
可左右滑动查看
3D细胞培养支架 - 已培养过的细胞类型

Primary cardiomyocytes contracting
on 3D Cell Culture Scaffold

3D细胞培养支架 - 生理意义 / 细胞培养微环境
NIH 3T3
rBMSCs
Hela
HepG2
3D细胞培养支架 - 质传效果好 / 长时间体外细胞培养

Live-dead staining of NIH 3T3 on scaffolds
and product M® after 7 days

The comparison of NIH 3T3 cell survival obtained by
MTS assay between BioScaffolds and product M®

GMP级3D细胞培养微载体 - 主要特点/ 竞争优势
品牌 Tantti
UniTantrix™ Microcarriers
G公司 P公司 C公司 K公司
产品内部结构
材料 collagen or polysaccharide cellulose gelatin polygalacturonic acid collagen
微载体尺寸(μm) 200-500μm 200-270 μm 130-380 μm 200-300 μm 100-400 μm
有效生长表面面积
内部平均孔径 ~150μm 30 μm 20 μm - -
高连通率 Yes No No No No
可溶解性 Yes No No No -
Autoclave Yes No No No No
可左右滑动查看
GMP级3D细胞培养微载体 - 有效表面积高/ 细胞产量高(竞品分析_干细胞量产)
— 微结构表面积高 细胞贴附高 细胞产量高 —
Cell Type BMSCs BMSCs
Microcarrier (Dry Power) Product C (PGA+Denatured Collagen) UnitantrixTM (Denatured Collagen)
Microcarrier Diameter 200~300 μm (solid spherical) 200~850 μm (irregular shape)
Microcarrier concentration 1 g / L (5000 cm2 / g ) 1 g / L (~6000 cm2 / g )
Dissolvable Yes Yes
— 维持干细胞良好活性及分化特性 —
— 材料使用量少 短时间可获得大量细胞 提升疫苗产量 —
Cell Type Vero Cell Vero Cell
Microcarriers (Dry Power) Product G(Dextran+DEAE) UniTantrixTM (Denatured Collagen)
Microcarriers Diameter 190 μm (solid spherical) 200~850 μm (irregular shape)
Microcarriers Concentration 5 g / L (4400 cm2 / g ) 2 g / L (~6000 cm2 / g )
Dissolvable No Yes
— 操作简单 省时 成本低 效率高 —
Unitantrix (Blank)
Unitantrix (Vero cell)
SEM image of vero cells on Unitantrix microcarriers
产品列表
产品系列 描述
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 96 well plates,5 inserts / vial,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 96 well plates,25 inserts / vial,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 96 well plates,50 inserts / vial,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 48 well plates,5 inserts / vial,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 48 well plates,25 inserts / vial,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 48 well plates,50 inserts / vial,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 96 well plates,32 inserts / 96 well plate,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 96 well plates,60 inserts / 96 well plate,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 96 well plates,96 inserts / 96 well plate,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 48 well plates,16 inserts / 48 well plate,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 48 well plates,24 inserts / 48 well plate,sterile
Tantti® BioScaffold(3D细胞培养支架) Insert Collagen Scaffold for 48 well plates,48 inserts / 48 well plate,sterile
   
Unitantrix® microcarriers (GMP级3D细胞培养微载体) Dissolvable microcarriers collagen,weight 500mg/vial,sterile
Unitantrix® microcarriers (GMP级3D细胞培养微载体) Dissolvable microcarriers collagen,weight 1g/vial,sterile
Unitantrix® microcarriers (GMP级3D细胞培养微载体) Dissolvable microcarriers collagen,weight 5g/vial,sterile
Unitantrix® microcarriers (GMP级3D细胞培养微载体) Dissolvable microcarriers collagen,weight 10g/vial,sterile
文献
— 使用文献 —
A. Hsieh T. W., et al., Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Acta Biomaterialia(Impact
factor: 6.319), 2016, 32: p. 210-222.
B. HunagS. B., et al.,Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture.Scientific Reports(Impact factor: 5.228),2015, article number: 18352.
C. Ling T. Y., et al., Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin-Microbubble scaffold.Biomaterials(Impact factor: 8.387), 2014, 35(22): p. 5660-5569.
— 均一孔径的优势 —
A.均一孔径
The uniform scaffold could provide a better microenvironment for cells in comparison to a scaffold with non-uniform size and structure.
(Cho S. W., et al., Lanqmuir, 2010.)
B.高度连通率
The uniform scaffold have been widely used in a wide variety of biomedical applications. While many of these applications directly rely on the high interconnectivity and superior structural reproducibility rather than the uniform pore size and structure, there are indeed a few unique applications that can otherwise never be accomplished using non-uniform scaffolds.
(Zhang Y. S., et al., Soft Matter, 2013.)
— 生医支架-相关验证文献 —
Applications Reference
A. Immune cells 1. Lee J., et al., Inverted colloidal crystal as three-dimensional microenvironment for cellular co-cultures. Journal of Materials Chemistry (Impact factor: 6.626), 2006, 16: p.3558-3564.
2. Stachowiak A. N. and Irvine D. J., Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. Journal of Biomedical Materials Research Part A (Impact factor: 3.263), 2008, 85(3): p. 815-828.
B. Cell migration 1. Peyton S. R., et al., Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol Bioeng (Impact factor: 4.243), 2011, 108(5): p. 1181-1193.
2. Sliva J. D., et. al., 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integrative Biology (impact factor: 3.371), 2011, 3: p. 1202-1206.
C. Formation of cell bodies 1. Lee J., et al., Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials (Impact factor: 8.387), 2009, 30(27): p. 4687-4694.
2. Lee J., et al., In vitro toxicity testing of nanoparticles in 3D cell culture. Small (Impact factor: 8.315), 2009, 5(10): p. 1213-1221.
3. Zhang Y. and Xia Y., Formation of Embryoid Bodies with Controlled Sizes and Maintained Pluripotency in Three-Dimensional Inverse Opal Scaffolds. Advanced Functional Materials (Impact factor: 11.382), 2012, 22(1): p. 121-129.
D. Neovascularization 1. Madden L. R., et al., Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America (Impact factor: 9.432), 2010, 107(34): p. 15211-15216
E. Bone 1. Osathanon T., et al., Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials (Impact factor: 8.387), 2008, 29(30): p. 4091-4099.
2. Cuddihy M. J. and Kotov N. A., Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Engineering Part A (Impact factor: 3.893), 2008, 14(10): p. 1639-1649.
3. Osathanon T., et al., Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials (Impact factor: 8.387), 2009, 30(27): p. 4513-4521.
4. Choi S. W., et al., In Vitro Mineralization by Preosteoblasts in Poly(dl-lactide-co-glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles. Lanqmuir (Impact factor: 3.993*), 2010, 26(14): p. 12126-12131.
F. Cartilage 1. Kuo Y. C. and Tsai Y. T., Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules (Impact factor: 5.583), 2010.11(3): p. 731-739.
2. Kuo Y. C. and Tsai Y. T., Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration. Collold surface B (Impact factor: 3.902), 2011, 82(2): p.616-623.
想了解更多3D细胞培养产品优势请点击这里